117 research outputs found

    Visualization of shoulder range of motion for clinical diagnostics and device development

    Get PDF

    Coupled pairs do not necessarily interact

    Get PDF
    Previous studies that examined paired sensorimotor interaction suggested that rigidly coupled partners negotiate roles through the coupling force [1-3]. As a result, several human-robot interaction strategies have been developed with such explicit role distribution [4-6]. However, the evidence for role formation in human pairs is missing; to understand how rigidly coupled pairs negotiate roles through the coupling, we systematically examined rigidly coupled pairs who made point-to-point reaching movements. Our results reveal the consistency of the coupling force during the movement, from the very beginning of interaction. Do partners somehow negotiate the roles prior to interaction? A more likely explanation is that the coupling force is a by-product of two people who independently planned their reaching movements. We developed a computational model of two independent motion planners, which explains inter-pair coupling force variability. We demonstrate that the coupling force alone is an unreliable measure of interaction, and that coupled reaching is not a suitable task to examine sensorimotor interaction between humans. [1] Reed KB, Peshkin M (2008), IEEE Trans Haptics 1: 108-20. [2] Stefanov N, Peer A, Buss M (2009), Proc Worldhaptics 51-6. [3] van der Wel RPRD, Knoblich G & Sebanz N (2011), J Exp Psychol 37: 1420-31. [4] Evrard P, Kheddar A (2009), Proc Worldhaptics 45-50. [5] Oguz S, Kucukyilmaz A, Sezgin T, Basdogan C (2010), Proc Worldhaptics 371-8. [6] Mörtl A, Lawitzky M, Kucukyilmaz A, Sezgin M, Basdogan C, Kirche S (2012), Int J of Robotics Research 31(13): 1656-74

    Training modalities in robot-mediated upper limb rehabilitation in stroke : A framework for classification based on a systematic review

    Get PDF
    © 2014 Basteris et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The work described in this manuscript was partially funded by the European project ‘SCRIPT’ Grant agreement no: 288698 (http://scriptproject.eu). SN has been hosted at University of Hertfordshire in a short-term scientific mission funded by the COST Action TD1006 European Network on Robotics for NeuroRehabilitationRobot-mediated post-stroke therapy for the upper-extremity dates back to the 1990s. Since then, a number of robotic devices have become commercially available. There is clear evidence that robotic interventions improve upper limb motor scores and strength, but these improvements are often not transferred to performance of activities of daily living. We wish to better understand why. Our systematic review of 74 papers focuses on the targeted stage of recovery, the part of the limb trained, the different modalities used, and the effectiveness of each. The review shows that most of the studies so far focus on training of the proximal arm for chronic stroke patients. About the training modalities, studies typically refer to active, active-assisted and passive interaction. Robot-therapy in active assisted mode was associated with consistent improvements in arm function. More specifically, the use of HRI features stressing active contribution by the patient, such as EMG-modulated forces or a pushing force in combination with spring-damper guidance, may be beneficial.Our work also highlights that current literature frequently lacks information regarding the mechanism about the physical human-robot interaction (HRI). It is often unclear how the different modalities are implemented by different research groups (using different robots and platforms). In order to have a better and more reliable evidence of usefulness for these technologies, it is recommended that the HRI is better described and documented so that work of various teams can be considered in the same group and categories, allowing to infer for more suitable approaches. We propose a framework for categorisation of HRI modalities and features that will allow comparing their therapeutic benefits.Peer reviewedFinal Published versio

    Design of an exercise glove for hand rehabilitation using spring mechanism

    Get PDF

    Lower Extremity Motor Impairments in Ambulatory Chronic Hemiparetic Stroke: Evidence for Lower Extremity Weakness and Abnormal Muscle and Joint Torque Coupling Patterns

    Get PDF
    Although global movement abnormalities in the lower extremity poststroke have been studied, the expression of specific motor impairments such as weakness and abnormal muscle and joint torque coupling patterns have received less attention. We characterized changes in strength, muscle coactivation and associated joint torque couples in the paretic and nonparetic extremity of 15 participants with chronic poststroke hemiparesis (age 59.6 ± 15.2 years) compared with 8 age-matched controls. Participants performed isometric maximum torques in hip abduction, adduction, flexion and extension, knee flexion and extension, ankle dorsi- and plantarflexion and submaximal torques in hip extension and ankle plantarflexion. Surface electromyograms (EMGs) of 10 lower extremity muscles were measured. Relative weakness (paretic extremity compared with the nonparetic extremity) was measured in poststroke participants. Differences in EMGs and joint torques associated with maximum voluntary torques were tested using linear mixed effects models. Results indicate significant poststroke torque weakness in all degrees of freedom except hip extension and adduction, adductor coactivation during extensor tasks, in addition to synergistic muscle coactivation patterns. This was more pronounced in the paretic extremity compared with the nonparetic extremity and with controls. Results also indicated significant interjoint torque couples during maximum and submaximal hip extension in both extremities of poststroke participants and in controls only during maximal hip extension. Additionally, significant interjoint torque couples were identified only in the paretic extremity during ankle plantarflexion. A better understanding of these motor impairments is expected to lead to more effective interventions for poststroke gait and posture

    Evaluation of EMG, force and joystick as control interfaces for active arm supports

    Get PDF
    Background:\ud The performance capabilities and limitations of control interfaces for the operation of active movement-assistive devices remain unclear. Selecting an optimal interface for an application requires a thorough understanding of the performance of multiple control interfaces. \ud \ud Methods:\ud In this study the performance of EMG-, force- and joystick-based control interfaces were assessed in healthy volunteers with a screen-based one-dimensional position-tracking task. The participants had to track a target that was moving according to a multisine signal with a bandwidth of 3 Hz. The velocity of the cursor was proportional to the interface signal. The performance of the control interfaces were evaluated in terms of tracking error, gain margin crossover frequency, information transmission rate and effort. \ud \ud Results:\ud None of the evaluated interfaces was superior in all four performance descriptors. The EMG-based interface was superior in tracking error and gain margin crossover frequency compared to the force- and the joystick-based interfaces. The force-based interface provided higher information transmission rate and lower effort than the EMG-based interface. The joystick-based interface did not present any significant difference with the force-based interface for any of the four performance descriptors. We found that significant differences in terms of tracking error and information transmission rate were present beyond 0.9 and 1.4 Hz respectively. \ud \ud Conclusions:\ud Despite the fact that the EMG-based interface is far from the natural way of interacting with the environment, while the force-based interface is closer, the EMG-based interface presented very similar and for some descriptors even a better performance than the force-based interface for frequencies below 1.4 Hz. The classical joystick presented a similar performance to the force-based interface and holds the advantage of being a well established interface for the control of many assistive devices. From these findings we concluded that all the control interfaces considered in this study can be regarded as a candidate interface for the control of an active arm support

    An explorative, cross-sectional study into abnormal muscular coupling during reach in chronic stroke patients

    Get PDF
    Background\ud In many stroke patients arm function is limited, which can be related to an abnormal coupling between shoulder and elbow joints. The extent to which this can be translated to activities of daily life (ADL), in terms of muscle activation during ADL-like movements, is rather unknown. Therefore, the present study examined the occurrence of abnormal coupling on functional, ADL-like reaching movements of chronic stroke patients by comparison with healthy persons.\ud \u
    corecore